982 research outputs found

    Fundamental constants and tests of general relativity - Theoretical and cosmological considerations

    Full text link
    The tests of the constancy of the fundamental constants are tests of the local position invariance and thus of the equivalence principle. We summarize the various constraints that have been obtained and then describe the connection between varying constants and extensions of general relativity. To finish, we discuss the link with cosmology, and more particularly with the acceleration of the Universe. We take the opportunity to summarize various possibilities to test general relativity (but also the Copernican principle) on cosmological scales.Comment: Proceedings of the workshop ``The nature of gravity, confronting theory and experiment in space'', ISSI, Bern, october 200

    `c' is the speed of light, isn't it?

    Full text link
    Theories proposing a varying speed of light have recently been widely promoted under the claim that they offer an alternative way of solving the standard cosmological problems. Recent observational hints that the fine structure constant may have varied during over cosmological scales also has given impetus to these models. In theoretical physics the speed of light, cc, is hidden in almost all equations but with different facets that we try to distinguish. Together with a reminder on scalar-tensor theories of gravity, this sheds some light on these proposed varying speed of light theories.Comment: 14 pages, Late

    Brane-World Motion in Compact Dimensions

    Full text link
    The topology of extra dimensions can break global Lorentz invariance,singling out a globally preferred frame even in flat spacetime. Through experiments that probe global topology, an observer can determine her state of motion with respect to the preferred frame. This scenario is realized if we live on a brane universe moving through a flat space with compact extra dimensions. We identify three experimental effects due to the motion of our universe that one could potentially detect using gravitational probes. One of these relates to the peculiar properties of the twin paradox in multiply-connected spacetimes. Another relies on the fact that the Kaluza-Klein modes of any bulk field are sensitive to boundary conditions. A third concerns the modification to the Newtonian potential on a moving brane. Remarkably, we find that even small extra dimensions are detectable by brane observers if the brane is moving sufficiently fast

    Probing dark energy beyond z=2z=2 with CODEX

    Full text link
    Precision measurements of nature's fundamental couplings and a first measurement of the cosmological redshift drift are two of the key targets for future high-resolution ultra-stable spectrographs such as CODEX. Being able to do both gives CODEX a unique advantage, allowing it to probe dynamical dark energy models (by measuring the behavior of their equation of state) deep in the matter era and thereby testing classes of models that would otherwise be difficult to distinguish from the standard Λ\LambdaCDM paradigm. We illustrate this point with two simple case studies.Comment: 4 pages, 4 figures; submitted to Phys. Rev.

    Distinguishing Marks of Simply-connected Universes

    Get PDF
    A statistical quantity suitable for distinguishing simply-connected Robertson-Walker (RW) universes is introduced, and its explicit expressions for the three possible classes of simply-connected RW universes with an uniform distribution of matter are determined. Graphs of the distinguishing mark for each class of RW universes are presented and analyzed.There sprout from our results an improvement on the procedure to extract the topological signature of multiply-connected RW universes, and a refined understanding of that topological signature of these universes studied in previous works.Comment: 13 pages, 4 figures, LaTeX2e. To appear in Int. J. Mod. Phys. D (2000

    Constraints on mode couplings and modulation of the CMB with WMAP data

    Full text link
    We investigate a possible asymmetry in the statistical properties of the cosmic microwave background temperature field and to do so we construct an estimator aiming at detecting a dipolar modulation. Such a modulation is found to induce correlations between multipoles with Δ=1\Delta\ell=1. Applying this estimator, to the V and W bands of the WMAP data, we found a significant detection in the V band. We argue however that foregrounds and in particular point sources are the origin of this signal.Comment: 14 pages, 14 figure
    corecore